Auto Encoder (AE)

Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the dimensionality of data with neural
networks." science 313.5786 (2006): 504-507.
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Motivation

»In MNIST, a digit is 28 x 28 dims
»Most 28 x 28 dim vectors are not digits
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Deep Auto-encoder

»NN encoder + NN decoder = a deep network

As close as possible
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Reference: Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the
dimensionality of data with neural networks." Science 313.5786 (2006): 504-507



Deep Auto-encoder
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Auto-encoder

»De-noising auto-encoder More: Contractive auto-encoder

Ref: Rifai, Salah, et al. "Contractive auto-encoders:
Explicit invariance during feature

extraction.” Proceedings of the 28th International
Conference on Machine Learning (ICML-11). 2011.

As close as possible l

&

decode

. -

Vincent, Pascal, et al. "Extracting and composing robust features with
denoising autoencoders." ICML, 2008.



Deep Auto-encoder - Example
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Auto-encoder for CNN

> FHCNNi# T4 85
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CNN-Unpooling
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Alternative: simply _
Source of image :

repeat the values https://leonardoaraujosantos.gitbooks.io/artificial-
inteligence/content/image_segmentation.html
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CNN-Deconvolution

»Deconvolution Ft& convolution

Actually, deconvolution is convolution.
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Auto-encoder — Pre-training DNN

» Greedy Layer-wise Pre-training again
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Auto-encoder — Pre-training DNN

» Greedy Layer-wise Pre-training again
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Auto-encoder — Pre-training DNN

»Greedy Layer-wise Pre-training again
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Auto-encoder — Pre-training DNN

»Greedy Layer-wise Pre-training again

Find-tune by
backpropagatio
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AE is not enough
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»Can we use decoder to generate something? J
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Creation

» Generative Models: https://openai.com/blog/generative-models/
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© Copyright California Institute of Technology. All rights reserved.
Commercial use or modification of this material is prohibited.

What | cannot create, | do
not understand.

Richard Feynman

https://www.quora.com/What-did-Richard-Feynman-mean-when-he-said-What-

I-cannot-create-l-do-not-understand
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Auto-encoder

As close as possible
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Variation Auto-encoder (VAE)
Ref: Auto-Encoding Variational Bayes, https://arxiv.org/abs/1312.6114
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Why VAE?

»code i {E B f#HY

Intuitive Reason
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